Photochemically Induced Dynamic Nuclear Polarization Observed by Solid-State NMR in a Uniformly (13)C-Isotope-Labeled Photosynthetic Reaction Center.
نویسندگان
چکیده
A sample of solubilized and quinone-depleted reaction centers from the purple bacterium Rhodobacter (R.) sphaeroides wild type has been prepared entirely (13)C and (15)N isotope labeled at all positions of the protein as well as of the cofactors. In this sample, the occurrence of the solid-state photo-CIDNP (photochemically induced dynamic nuclear polarization) effect has been probed by (13)C solid-state magic-angle spinning NMR under illumination. Under continuous illumination, signal intensities are modified by the three-spin mixing (TSM) mechanism. Time-resolved illumination experiments reveal the occurrence of light-induced nuclear polarization on the time scale of hundreds of microseconds, initially dominated by the transient polarization of the singlet branch of the radical-pair mechanism. A first kinetic analysis shows that the lifetime of the polarization from the singlet branch, indicated by the enhanced absorptive intensities of the signals from aliphatic carbons, is significantly extended. Upon arrival of the polarization from the triplet decay branch, emissive polarization caused by the TSM mechanism is observed. Also, this arrival is significantly delayed. The decay of TSM polarization occurs in two steps, assigned to intra- and intermolecular spin diffusion.
منابع مشابه
Characterization of bacteriopheophytin a in the active branch of the reaction center of Rhodobacter sphaeroides by 13C photo-CIDNP MAS NMR
The electronic structure of the primary electron acceptor, bacteriopheophytin a (A), in photosynthetic reaction centers (RCs) of the purple bacterium Rhodobacter (R.) sphaeroides is investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) NMR spectroscopy. Uniformly labelled RCs have been prepared for these experiments, by adding the u-13C4-...
متن کاملAction Spectroscopy on Dense Samples of Photosynthetic Reaction Centers of Rhodobacter sphaeroides WT Based on Nanosecond Laser-Flash 13C Photo-CIDNP MAS NMR
Photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance (photo-CIDNP MAS NMR) allows for the investigation of the electronic structure of the photochemical machinery of photosynthetic reaction centers (RCs) at atomic resolution. For such experiments, either continuous radiation from white xenon lamps or green laser pulses are applied to optically den...
متن کاملStructure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR.
We have determined the atomic structure of the bacteriochlorophyll c (BChl c) assembly in a huge light-harvesting organelle, the chlorosome of green photosynthetic bacteria, by solid-state NMR. Previous electron microscopic and spectroscopic studies indicated that chlorosomes have a cylindrical architecture with a diameter of approximately 10 nm consisting of layered BChl molecules. Assembly st...
متن کامل15N Photo-CIDNP MAS NMR To Reveal Functional Heterogeneity in Electron Donor of Different Plant Organisms
In plants and cyanobacteria, two light-driven electron pumps, photosystems I and II (PSI, PSII), facilitate electron transfer from water to carbon dioxide with quantum efficiency close to unity. While similar in structure and function, the reaction centers of PSI and PSII operate at widely different potentials with PSI being the strongest reducing agent known in living nature. Photochemically i...
متن کاملPhotochemically induced nuclear spin polarization in reaction centers of photosystem II observed by 13C-solid-state NMR reveals a strongly asymmetric electronic structure of the P680 .1 primary donor chlorophyll
We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photoCIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 119 43 شماره
صفحات -
تاریخ انتشار 2015